
IJAICT Volume 2, Issue 3, March 2015
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2014.02.10 Published Online 05 (3) 2015

Corresponding Author: Mr. N.R. Rejin Paul, Velammal Institute of Technology, Chennai, Tamilnadu, India. 227

HLA BASED THIRD PARTY AUDITING FOR SECURE
CLOUD STORAGE

Mr. N.R. Rejin Paul
Assistant Professor,

Department of Computer Science and Engineering,
Velammal Institute of Technology,

Chennai, Tamilnadu, India.

Abstract— Using Cloud Storage, users can remotely store their
data and enjoy high quality applications and services from a shared
pool of resources. However, users, when they don’t have the physical
possession of the data, possibility of data integrity issue are possible.
Thus, verification of data integrity is the at most important for a
user, who has outsourced data to the cloud. To make the integrity
check, a public auditing must be made possible. Thus, we resort to a
Third Party Auditor (TPA). Also, the auditing process should not
bring in further more burdens to the user. In this paper, we propose
a secure cloud storage for which we integrate the technique of
Homomorphic linear authenticator with random masking. Thereby,
we can assure integrity of the user’s outsourced data in the cloud.
Also we propose batch auditing, in which TPA can perform
simultaneous auditing at a time.

Keywords — Data integrity, Third Party Auditing, Public Auditing,
Data storage, Cloud computing, Batch verification, Zero knowledge.

I. INTRODUCTION
Cloud computing has been viewed as the next-generation
information technology (IT) architecture for enterprises, due to
its long list of advantages in the IT history: on-demand self-
service, location independent resource pooling, rapid resource
elasticity, usage-based pricing and transference of risk [2].
Cloud computing is transforming the way how businesses use
information technology. One fundamental aspect of this
moving into Cloud is that data are being centralized or
outsourced to the cloud. From users’ perspective, including
both individuals and IT enterprises, storing data remotely to the
cloud in a flexible on-demand manner brings appealing
benefits: relief of the burden for storage management, universal
data access with location independence, and avoidance of
capital expenditure on hardware, software, and personnel
maintenances, etc., [3] Since cloud service providers (CSP) are
separate administrative entities, data outsourcing is actually
destroying user’s ultimate control over the fate of their data. As
a result, the correctness of the data in the cloud is being put at
risk due to the following reasons. First of all, they are still
facing the broad range of both internal and external threats for

data integrity [4]. Second, there may various motivations for
CSP to behave unfaithfully toward the cloud users regarding
their outsourced data status. In short, although outsourcing data
to the cloud is economic-ally attractive for long-term large-
scale storage, it does not immediately offer any guarantee on
data integrity and availability. This problem, if not properly
addressed, may decrease the success of cloud architecture.

As users no longer physically possess the storage of their data,
traditional cryptographic primitives for the purpose of data
security protection cannot be directly adopted [11]. In
particular, simply downloading all the data for its integrity
verification is not a practical solution due to the expensiveness
in I/O and transmission cost across the network. Besides, it is
often insufficient to detect the data corruption only when
accessing the data, as it does not give users correctness
assurance for those un accessed data and might be too late to
recover the data loss or damage.

Considering the large size of the outsourced data and the user’s
constrained resource capability, the tasks of auditing the data
correctness in a cloud environment can be formidable and
expensive for the cloud users [12], [8]. Moreover, the overhead
of using cloud storage should be minimized as much as
possible, such that a user does not need to perform too many
operations to use the data (in additional to retrieving the data).
In particular, users may not want to go through the complexity
in verifying the data integrity. Besides, there may be more than
one user accesses the same cloud storage, say in an enterprise
setting. For easier management, it is desirable that cloud only
entertains verification request from a single designated party.

To fully ensure the data integrity and save the cloud users’
computation resources as well as online burden, it is of critical
importance to enable public auditing service for cloud data
storage, so that users may resort to an independent third-party
auditor (TPA) to audit the outsourced data when needed. The

© 2015 IJAICT (www.ijaict.com)

Corresponding Author: Mr. N.R. Rejin Paul, Velammal Institute of Technology, Chennai, Tamilnadu, India. 228

TPA, who has expertise and capabilities that users do not, can
periodically check the integrity of all the data stored in the
cloud on behalf of the users, which provides a much more
easier and affordable way for the users to ensure their storage
correctness in the cloud. Moreover, in addition to help users to
evaluate the risk of their subscribed cloud data services, the
audit result from TPA would also be beneficial for the cloud
service providers to improve their cloud based service platform,
and even serve for independent arbitration purposes [10]. In a
word, enabling public auditing services will play an important
role for this nascent cloud economy to become fully
established; where users will need ways to assess risk and gain
trust in the cloud.

Recently, the notion of public audit ability has been proposed in
the context of ensuring remotely stored data integrity under
different system and security models [9], [13], [11], [8]. Public
audit ability allows an external party, in addition to the user
himself, to verify the correctness of remotely stored data.
However, most of these schemes [9], [13], [8] do not consider
the privacy protection of users’ data against external auditors.
Indeed, they may potentially reveal user’s data to auditors, as
will be discussed in Section 3.4. This severe drawback greatly
affects the security of these protocols in cloud computing. From
the perspective of protecting data privacy, the users, who own
the data and rely on TPA just for the storage security of their
data, do not want this auditing process introducing new
vulnerabilities of unauthorized information leakage toward
their data security [14], [15].

Simply exploiting data encryption before outsourcing [15], [11]
could be one way to mitigate this privacy concern of data
auditing, but it could also be an overkill when employed in the
case of unencrypted/public cloud data (e.g., outsourced libraries
and scientific data sets), due to the unnecessary processing
burden for cloud users. Unauthorized data leakage still remains
possible due to the potential exposure of decryption keys.

Therefore, how to enable a privacy-preserving third-party
auditing protocol, independent to data encryption, is the
problem we are going to tackle in this paper. As the individual
auditing of these growing tasks can be tedious and
cumbersome, a natural demand is then how to enable the TPA
to efficiently perform multiple auditing tasks in a batch manner,
i.e., simultaneously.

To address these problems, our work utilizes the technique of
public key-based homomorphic linear authenticator (or HLA

for short) [9], [13], [8], which enables TPA to perform the
auditing without demanding the local copy of data and thus
drastically reduces the communication and computation
overhead as compared to the straightforward data auditing
approaches. By integrating the HLA with random masking, our
protocol guarantees that the TPA could not learn any
knowledge about the data content stored in the cloud server
(CS) during the efficient auditing process.

The aggregation and algebraic properties of the authenticator
further benefit our design for the batch auditing. Specifically,
we concentrate on the following aspects:

 Our scheme enables an external auditor to audit user’s
cloud data without learning the data content.

 Our scheme achieves batch auditing where multiple
delegated auditing tasks from different users can be
performed simultaneously by the TPA in a privacy-
preserving manner.

 We prove the security and justify the performance of
our proposed schemes through concrete experiments
and comparisons with the state of the art.

II. CURRENT SCENARIO AND PROPOSED MODEL

2.1 The System and Threat Model
We consider a cloud data storage service involving three
different entities, as illustrated in the Figure: the cloud user,
who has large amount of data files to be stored in the cloud; the
cloud server, which is managed by the cloud service provider to
provide data storage service and has significant storage space
and computation resources; the third-party auditor, who has
expertise and capabilities that cloud users do not have and is
trusted to assess the cloud storage service reliability on behalf
of the user upon request. Users rely on the CS for cloud data
storage and maintenance. As users no longer possess their data
locally, it is of critical importance for users to ensure that their
data are being correctly stored and maintained. To save the
computation resource as well as the online burden potentially
brought by the periodic storage correctness verification, cloud
users may resort to TPA while hoping to keep their data private
from TPA.

We assume the data integrity threats toward users’ data can
come from both internal and external attacks at CS. Besides,

IJAICT Volume 2, Issue 3, March 2015

© 2015 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.02.10 Published Online 05 (3) 2015

Corresponding Author: Mr. N.R. Rejin Paul, Velammal Institute of Technology, Chennai, Tamilnadu, India. 229

CS can be self-interested. For their own benefits, such as to
maintain reputation, CS might even decide to hide these data
corruption incidents to users. Using third-party auditing service
provides a cost-effective method for users to gain trust in cloud.
We assume the TPA, who is in the business of auditing, is
reliable and independent. However, it may harm the user if the
TPA could learn the outsourced data after the audit.

Fig 1 : Cloud Service

Note that in our model, beyond users’ reluctance to leak data to
TPA, we also assume that cloud servers have no incentives to
reveal their hosted data to external parties. Therefore, we
assume that neither CS nor TPA has motivations to collude
with each other during the auditing process.

To authorize the CS to respond to the audit delegated to TPA’s,
the user can issue a certificate on TPA’s public key, and all
audits from the TPA are authenticated against such a certificate.
These authentication handshakes are omitted in the following
presentation.

2.2 Design goals

To enable privacy-preserving public auditing for cloud data
storage under the aforementioned model, our protocol design
should achieve the following security and performance
guarantees

 Public auditability: To allow TPA to verify the
correctness of the cloud data on demand without
retrieving a copy of the whole data or introducing
additional online burden to the cloud users.

 Storage correctness: To ensure that there exists no
cheating cloud server that can pass the TPA’s audit
without indeed storing users’ data intact.

 Privacy preserving: To ensure that the TPA cannot
derive users’ data content from the information
collected during the auditing process.

 Batch auditing: To enable TPA with secure and
efficient auditing capability to cope with multiple
auditing delegations from possibly large number of
different users simultaneously.

 Lightweight: To allow TPA to perform auditing with
minimum communication and computation overhead.

III. THE PROPOSED SCHEMES

3.1 Notation and Preliminaries

This section presents our public auditing scheme which
provides a complete outsourcing solution of data—not only the
data itself, but also its integrity checking. After introducing
notations and brief preliminaries, we start from an overview of
our public auditing system and discuss two straightforward
schemes and their demerits. Then, we present our main scheme
and show how to extent our main scheme to support batch
auditing for the TPA upon delegations from multiple users.
Finally, we discuss how to generalize our privacy-preserving
public auditing scheme and its support of data dynamics.

 F: the data file to be outsourced, denoted as a sequence
of n blocks m1, m2, m3,..,mi,.., mn € Zp for some
large prime p.

 MAC(.) (.) : message authentication code (MAC)
function, defined as: K X {0, 1}* => {0, 1}l where K
denotes Key space.

 H (.), h (.) : cryptographic hash functions

We now introduce some necessary cryptographic background
for our proposed scheme.

Bilinear Map: Let G1, G2, and GT be multiplicative cyclic
groups of prime order p. Let g1 and g2 be generators of G1 and
G2, respectively. A bilinear map e is a map:
G1 X G2 -> GT such that for all u € G1G2 and

a; b €Zp, e(ua , vb) = e(u,v)ab. This bilinearity implies that for
any u1, u2 €G1, v€G2, e(u1.u2, v)= e(u1,v).e(u2; v). Of course,
there exists an efficiently computable algorithm for computing
e and the map should be nontrivial, i.e., e is non degenerate: e
(g1; g2) ≠ 1.

IJAICT Volume 2, Issue 3, March 2015

© 2015 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.02.10 Published Online 05 (3) 2015

Corresponding Author: Mr. N.R. Rejin Paul, Velammal Institute of Technology, Chennai, Tamilnadu, India. 230

3.2 Definitions and Framework

We follow a similar definition of previously proposed schemes
in the context of remote data integrity checking [9], [11], [13]
and adapt the framework for our privacy-preserving public
auditing system. A public auditing scheme consists of four
algorithms (KeyGen, SigGen, GenProof, VerifyProof). KeyGen
is a key generation algorithm that is run by the user to setup the
scheme. SigGen is used by the user to generate verification
metadata, which may consist of digital signa-tures. GenProof is
run by the cloud server to generate a proof of data storage
correctness, while VerifyProof is run by the TPA to audit the
proof.

Running a public auditing system consists of two phases, Setup
and Audit:
Setup: The user initializes the public and secret parameters of
the system by executing KeyGen, and pre processes the data
file F by using SigGen to generate the verification metadata.
The user then stores the data file F and the verification
metadata at the cloud server, and delete its local copy. As part
of pre processing, the user may alter the data file F by
expanding it or including additional metadata to be stored at
server.

Audit: The TPA issues an audit message or challenge to the
cloud server to make sure that the cloud server has retained the
data file F properly at the time of the audit. The cloud server
will derive a response message by executing GenProof using F
and its verification metadata as inputs. The TPA then verifies
the response via Verify Proof.

Our framework assumes that the TPA is stateless, i.e., TPA
does not need to maintain and update state between audits,
which is a desirable property especially in the public auditing
system [13].

Note that it is easy to extend the framework above to capture a
stateful auditing system, essentially by splitting the verification
metadata into two parts which are stored by the TPA and the
cloud server, respectively.

Our design does not assume any additional property on the data
file. If the user wants to have more error resilience, he can first
redundantly encode the data file and then uses our system with
the data that has error-correcting codes integrated.

3.3 The Basic Scheme

Before giving our main result, we study two classes of schemes
as a warm up. The first one is a MAC-based solution which
suffers from undesirable systematic demerits - bounded usage
and stateful verification, which may pose additional online
burden to users, in a public auditing setting.

This also shows that the auditing problem is still not easy to
solve even if we have introduced a TPA. The second one is a
system based on homomorphic linear authenticators, which
covers much recent proof of storage systems. We will pinpoint
the reason why all existing HLA-based systems are not privacy
preserving. The analysis of these basic schemes leads to our
main result, which overcomes all these drawbacks. Our main
scheme to be presented is based on a specific HLA scheme.

MAC-based solution: There are two possible ways to make use
of MAC to authenticate the data. A trivial way is just uploading
the data blocks with their MACs to the server, and sends the
corresponding secret key sk to the TPA. Later, the TPA can
randomly retrieve blocks with their MACs and check the
correctness via sk. Apart from the high (linear in the sampled
data size) communication and computation complexities, the
TPA requires the knowledge of the data blocks for verification.

To circumvent the requirement of the data in TPA verification,
one may restrict the verification to just consist of equality
checking. The idea is as follows: Before data outsourcing, the
cloud user chooses‘s’ random Message Authentication Code
keys {skr}1<=r<=s’ precomputes MACs for the whole file F and
publishes these verification metadata (the keys and the MACs)
to TPA. The TPA can reveal a secret key skr to the cloud server
and ask for a fresh keyed MAC for comparison in each audit.
This is privacy preserving as long as it is impossible to recover
F in full given MAC skr(F) and skr. However, it suffers from
the following severe drawbacks:

The number of times a particular data file can be audited is
limited by the number of secret keys that must be fixed a prior.
Once all possible secret keys are exhausted, the user then has to
retrieve data in full to recompute and republish new MACs to
TPA.

 The TPA also has to maintain and update state
between audits, i.e., keep track on the revealed MAC
keys. Considering the potentially large number of

IJAICT Volume 2, Issue 3, March 2015

© 2015 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.02.10 Published Online 05 (3) 2015

Corresponding Author: Mr. N.R. Rejin Paul, Velammal Institute of Technology, Chennai, Tamilnadu, India. 231

audit delegations from multiple users, maintaining
such states for TPA can be difficult and error prone.

 It can only support static data, and cannot efficiently
deal with dynamic data at all. However, supporting
data dynamics is also of critical importance for cloud
storage systems.

HLA-based solution: To effectively support public audit ability
without having to retrieve the data blocks themselves, the HLA
technique [9], [13], [8] can be used. HLAs, like MACs, are also
some un forgeable verification metadata that authenticate the
integrity of a data block. The difference is that HLAs can be
aggregated. It is possible to compute an aggregated HLA which
authenticates a linear combination of the individual data blocks.
At a high level, an HLA-based proof of storage system works
as follow. The user still authenticates each element of F = {mi}
by a set of HLAs ɸ. The TPA verifies the cloud storage by
sending a random set of challenge {vi}. The cloud server then
returns µ=∑i vi. mi and its aggregated authenticator σ computed
from ɸ.

Though allowing efficient data auditing and consuming only
constant bandwidth, the direct adoption of these HLA based
techniques is still not suitable for our purposes. This is because
the linear combination of blocks, µ=∑i vi. mi, may potentially
reveal user data information to TPA, and violates the privacy-
preserving guarantee. Specifically, by challenging the same set
of c block m1, m2 . . ., mc using c different sets of random
coefficients {vi}, TPA can accumulate c different linear
ombinations µ1, µc. With { µi} and {vi}, TPA can derive
the user’s data m1,m2, . . ., mc by simply solving a system of
linear equations.

Fig 2 : TPA Vs Cloud Server
To achieve privacy-preserving public auditing, we propose to
uniquely integrate the homomorphic linear authenticator with

random masking technique. In our protocol, the linear
combination of sampled blocks in the server’s response is
masked with randomness generated by the server. With random
masking, the TPA no longer has all the necessary information
to build up a correct group of linear equations and therefore
cannot derive the user’s data content, no matter how many
linear combinations of the same set of file blocks can be
collected. On the other hand, the correctness validation of the
block-authenticator pairs can still be carried out in a new way
which will be shown shortly, even with the presence of the
randomness. Our design makes use of a public key-based HLA,
to equip the auditing protocol with public audit ability.
Specifically, we use the HLA proposed in [13], which is based
on the short signature scheme proposed by Boneh, Lynn, and
Shacham [19].

Scheme details: Let G1, G2, and GT be multiplicative cyclic
groups of prime order p, and e: G1 X G2 => GT be abilinear
map as introduced in preliminaries. Let g be agenerator of G2.
H(.) is a secure map-to-point hash function: {0, 1}*=>G1,
which maps strings uniformly toG1. Another hash function h(.):
GT=> Zp maps group element of GT uniformly to Zp. Our
scheme is asfollows:

Setup Phase: The cloud user runs KeyGen to generate the
public and secret parameters. Specifically, the user chooses a
random signing key pair (spk, ssk), a random x <=Zp, a random
element u <= G1, and computes v<= gx. The secret parameter is
sk = (x, ssk) and the public parameters are pk = (spk, v, g, u;
e(u, v)).

Given a data file F= {mi}, the user runs SigGen to compute
authenticator σi<= H((Wi) . umi)x€ G1 for each i.Here, Wi=
name || i and name is chosen by the user uniformly at random
from Zp as the identifier of file F. Denote the set of
authenticators by ɸ= {σi}1<=i<=n. The last part of SigGen is for
ensuring the integrity of the unique file identifier name. One
simple way to do this is to computet=name || SSigssk(name) as
the file tag for F, where SSigssk(name) is the signature on
name under the private key ssk. For simplicity, we assume the
TPA knows the number of blocks n. The user then sends F
along with the verification metadata (ɸ, t) to the server and
deletes them from local storage.

Audit Phase: The TPA first retrieves the file tag t. With respect
to the mechanism we describe in the Setup phase, the TPA
verifies the signature SSigssk(name) via spk, and quits by
emitting FALSE if the verification fails. Otherwise, the TPA

IJAICT Volume 2, Issue 3, March 2015

© 2015 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.02.10 Published Online 05 (3) 2015

Corresponding Author: Mr. N.R. Rejin Paul, Velammal Institute of Technology, Chennai, Tamilnadu, India. 232

recovers name.

Now it comes to the “core” part of the auditing process. To
generate the challenge message for the audit “chal,” the TPA
picks a random c-element subset I = {s1, s2, s3,..., sc} of set [1,
n]. For each element i € I, the TPA also chooses a random value
vi. The message “chal” specifies the positions of the blocks
required to be checked. The TPA sends chal ={(i, vi)} i€I to the
server.

Upon receiving challenge chal = {(i, vi)} i€I , the server runs
GenProof to generate a response proof of data storage
correctness. Specifically, the server chooses a random element r
<= Zp, and calculates R = e(u, v)r€ GT . Let µ’ denote the
linear combination of sampled blocks specified in chal:
µ’=∑i€Ivimi. To blind µ’ with r, the server computes: µ= r +ϒµ’
mod p, where ϒ= h(R) € Zp. Meanwhile, the server also
calculates an aggregated authenticator σ=Ӆi€Iσi

vi€ G1. It then
sends {µ, σ, R},as the proof of storage correctness to the TPA.
With the response, the TPA runs VerifyProof to validate it by
first computing ϒ= h(R) and then checking the
verification equations.

3.4 Support for Data Dynamics

In cloud computing, outsourced data might not only be
accessed but also updated frequently by users for various
application purposes [21], [8], [22], [23]. Hence, supporting
data dynamics for privacy-preserving public auditing is also of
paramount importance. Now, we show how to build upon the
existing work [8] and adapt our main scheme to support data
dynamics, including block level operations of modification,
deletion, and insertion.
In [8], data dynamics support is achieved by replacing the index
information i with mi in the computation of block
authenticators and using the classic data structure - Merkle hash
tree (MHT) [24] for the underlying block sequence
enforcement. As a result, the authenticator for each block is
changed to σi = (H(mi) . umi)x. We can adopt this technique in
our design to achieve privacy preserving public auditing with
support of data dynamics.

3.5 Generalisation

As mentioned before, our protocol is based on the HLA in [13].
It has been shown in [25] that HLA can be constructed by
homomorphic identification protocols. One may apply the
random masking technique we used to construct the

corresponding zero knowledge proof for different
homomorphic identification protocols. Therefore, our privacy
preserving public auditing system for secure cloud storage can
be generalized based on other complexity assumptions, such as
factoring [25].

IV. ZERO KNOWLEDGE PUBLIC AUDITING

Fig 3 : Comparison on auditing

Comparison on auditing time between batch and individual
auditing, when α-fraction of 256 responses are invalid: Per task
auditing time denotes the total auditing time divided by the
number of tasks.

The above auditing protocol achieves zero knowledge
information leakage to the TPA, and it also ensures the
storage correctness guarantee.

Proof
Zero-knowledge is easy to see. Randomly pick ϒ; µ; & ζ from
Zp and ∑ from G1, set R<= e((Ӆi=s1

sc H(Wi)vi)ϒ. uӅ, v) . e(g1,
g)ζ/e(∑ϒ; g) and backpatch ϒ = h(R). For proof of storage
correctness, we can extract ῤ similar to the extraction of µ’.
Likewise, σ can be recovered from ∑. To conclude, a valid pair
of σ and µ’ can be extracted.

V. RELATED WORK

Ateniese et al. [9] are the first to consider public auditability in
their “provable data possession” (PDP) model for ensuring
possession of data files on untrusted storages. They utilize the
RSA-based homomorphic linear authenticators for auditing
outsourced data and suggest randomly sampling a few blocks of
the file. However, among their two proposed schemes, the one

IJAICT Volume 2, Issue 3, March 2015

© 2015 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.02.10 Published Online 05 (3) 2015

Corresponding Author: Mr. N.R. Rejin Paul, Velammal Institute of Technology, Chennai, Tamilnadu, India. 233

with public auditability exposes the linear combination of
sampled blocks to external auditor. When used directly, their
protocol is not provably privacy preserving, and thus may leak
user data information to the external auditor. Juels et al. [11]
describe a “proof of retrievability” (PoR) model, where spot-
checking and error-correcting codes are used to ensure both
“possession” and “retrievability” of data files on remote archive
service systems. However, the number of audit challenges a
user can perform is fixed a prior, and public auditability is not
supported in their main scheme.

Although they describe a straightforward Merkle-tree
construction for public PoRs, this approach only works with
encrypted data. Later, Bowers et al. [18] propose an improved
framework for POR protocols that generalizes Juels’ work.
Dodis et al. [29] also give a study on different variants of PoR
with private auditability. Shacham and Waters [13] design an
improved PoR scheme built from BLS signatures [19] with
proofs of security in the security model defined in [11]. Similar
to the construction in [9], they use publicly verifiable
homomorphic linear authenticators that are built from provably
secure BLS signatures.

Based on the elegant BLS construction, a compact and public
verifiable scheme is obtained. Again, their approach is not
privacy preserving due to the same reason as [9]. Shah et al.
[15], [10] propose introducing a TPA to keep online storage
honest by first encrypting the data then sending a number of
pre-computed symmetric-keyed hashes over the encrypted data
to the auditor. The auditor verifies the integrity of the data file
and the server’s possession of a previously committed
decryption key. This scheme only works for encrypted files,
requires the auditor to maintain state, and suffers from bounded
usage, which potentially brings in online burden to users when
the keyed hashes are used up.

Dynamic data have also attracted attentions in the recent
literature on efficiently providing the integrity guarantee of
remotely stored data. Ateniese et al. [21] is the first to propose
a partially dynamic version of the prior PDP scheme, using
only symmetric key cryptography but with a bounded number
of audits. In [22], Wang et al. consider a similar support for
partially dynamic data storage in a distributed scenario with
additional feature of data error localization. In a subsequent
work, Wang et al. [8] propose to combine BLS-based HLA
with MHT to support fully data dynamics. Concurrently, Erway
et al. [23] develop a skip list-based scheme to also enable
provable data possession with full dynamics support. However,

the verification in both protocols requires the linear
combination of sampled blocks as an input, like the designs in
[9], [13], and thus does not support privacy-preserving auditing.

In other related work, Sebe et al. [30] thoroughly study a set of
requirements which ought to be satisfied for a remote data
possession checking protocol to be of practical use. Their
proposed protocol supports unlimited times of file integrity
verifications and allows preset tradeoff between the protocol
running time and the local storage burden at the user. Schwarz
and Miller [31] propose the first study of checking the integrity
of the remotely stored data across multiple distributed servers.
Their approach is based on erasure-correcting code and
efficient algebraic signatures, which also have the similar
aggregation property as the homomorphic authenticator utilized
in our approach.

Curtmola et al. [32] aim to ensure data possession of multiple
replicas across the distributed storage system. They extend the
PDP scheme in [9] to cover multiple replicas without encoding
each replica separately, providing guarantee that multiple
copies of data are actually maintained.

In [33], Bowers et al. utilize a two-layer erasure-correcting
code structure on the remotely archived data and extend their
POR model [18] to distributed scenario with high-data
availability assurance.

While all the above schemes provide methods for efficient
auditing and provable assurance on the correctness of remotely
stored data, almost none of them necessarily meet all the
requirements. Our scheme can greatly reduce the computation
cost on the TPA when coping with a large number of audit
delegations.

Portions of the work presented in this paper have previously
appeared as an extended abstract in [1]. We have revised the
paper a lot and improved many technical details as compared to
[1]. The primary improvements are as follows: First, we
provide a new privacy-preserving public auditing protocol with
enhanced security strength in a previous section. Second, based
on the enhanced main auditing scheme,

we provide a new provably secure batch auditing protocol. All
the experiments in our performance evaluation for the newly
designed protocol are completely redone. Finally, we provide
formal analysis of privacy-preserving guarantee and storage
correctness, while only heuristic arguments are sketched in [1].

IJAICT Volume 2, Issue 3, March 2015

© 2015 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2014.02.10 Published Online 05 (3) 2015

© 2015 IJAICT (www.ijaict.com)

Corresponding Author: Mr. N.R. Rejin Paul, Velammal Institute of Technology, Chennai, Tamilnadu, India. 234

VI. CONCLUSION

In this paper, we propose a privacy-preserving public auditing
system for data storage security in cloud comput-ing. We
utilize the homomorphic linear authenticator and random
masking to guarantee that the TPA would not learn any
knowledge about the data content stored on the cloud server
during the efficient auditing process, which not only eliminates
the burden of cloud user from the tedious and possibly
expensive auditing task, but also alleviates the users’ fear of
their outsourced data leakage. Considering TPA may
concurrently handle multiple audit sessions from different users
for their outsourced data files, we further extend our privacy-
preserving public auditing protocol into a multiuser setting,
where the TPA can perform multiple auditing tasks in a batch
manner for better efficiency. Extensive analysis shows that our
schemes are provably secure and highly efficient. Our
preliminary experiment conducted on Amazon EC2 instance
further demonstrates the fast performance of our design on both
the cloud and the auditor side. We leave the full-fledged
implementation of the mechanism on commercial public cloud
as an important future extension, which is expected to robustly
cope with very large scale data and thus encourage users to
adopt cloud storage services more confidently.

References

[1] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving Public
Auditing for Storage Security in Cloud Computing,” Proc.IEEE
INFOCOM ’10, Mar. 2010.

[2] P. Mell and T. Grance, “Draft NIST Working Definition of Cloud
Computing,” http://csrc.nist.gov/groups/SNS/cloud-
computing/index.html, June 2009.

[3] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski,
G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the
Clouds: A Berkeley View of Cloud Comput-ing,” Technical Report UCB-
EECS-2009-28, Univ. of California, Berkeley, Feb. 2009.

[4] Cloud Security Alliance , “Top threats to Cloud Computing [29].
[5] M. Arrington, “Gmail Disaster: Reports of Mass Email Deletions,”

http://www.techcrunch.com/2006/12/28/gmail-disasterreports-of-mass-
email-deletions/, 2006.

[6] J. Kincaid, “MediaMax/TheLinkup Closes Its Doors,” http://
www.techcrunch.com/2008/07/10/mediamaxthelinkup-closes-its-doors/,
July 2008.

[7] Amazon.com, “Amazon s3 Availability Event: July 20, 2008,”
http://status.aws.amazon.com/s3-20080720.html, July 2008.

[8] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling Public
Auditability and Data Dynamics for Storage Security in Cloud
Computing,” IEEE Trans. Parallel and Distributed Systems, vol. 22, no. 5,
pp. 847-859, May 2011.

[9] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable Data Possession at Untrusted Stores,” Proc. 14th
ACM Conf. Computer and Comm. Security(CCS ’07), pp. 598-609, 2007.

[10] M.A. Shah, R. Swaminathan, and M. Baker, “Privacy-Preserving Audit
and Extraction of Digital Contents,” Cryptology ePrint Archive, Report
2008/186, 2008.

[11] Juels and J. Burton, S. Kaliski, “PORs: Proofs of Retrievability for Large
Files,” Proc. ACM Conf. Computer and Comm. Security(CCS ’07), pp.
584-597, Oct. 2007.

[12] Cloud Security Alliance, “Security Guidance for Critical Areas of Focus
in Cloud Computing,” http://www.cloudsecurityalliance. org, 2009.

[13] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” Proc.
Int’l Conf. Theory and Application of Cryptology and Information
Security: Advances in Cryptology (Asiacrypt), vol. 5350, pp. 90-107,Dec.
2008.

[14] C. Wang, K. Ren, W. Lou, and J. Li, “Towards Publicly Auditable Secure
Cloud Data Storage Services,” IEEE Network Magazine, vol. 24, no. 4,
pp. 19-24, July/Aug. 2010.

[15] M.A. Shah, M. Baker, J.C. Mogul, and R. Swaminathan, “Auditing to
Keep Online Storage Services Honest,” Proc. 11th USENIXWorkshop
Hot Topics in Operating Systems (HotOS ’07), pp. 1-6, 2007.

[16] 104th United States Congress, “Health Insurance Portability and
Accountability Act of 1996 (HIPPA),” http://aspe.hhs.gov/
admnsimp/pl104191.htm, 1996.

[17] R. Curtmola, O. Khan, and R. Burns, “Robust Remote Data Checking,”
Proc. Fourth ACM Int’l Workshop Storage Security andSurvivability
(StorageSS ’08), pp. 63-68, 2008.

[18] F. Sebe, J. Domingo-Ferrer, A. Martı´nez-Balleste, Y. Deswarte, and J.-J.
Quisquater, “Efficient Remote Data Possession Checking in Critical
Information Infrastructures,” IEEE Trans. Knowledge andData Eng., vol.
20, no. 8, pp. 1034-1038, Aug. 2008.

IJAICT Volume 2, Issue 3, March 2015
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2014.02.10 Published Online 05 (3) 2015

