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Abstract— Using Cloud Storage, users can remotely store their 
data and enjoy high quality applications and services from a shared 
pool of resources. However, users, when they don’t have the physical 
possession of the data, possibility of data integrity issue are possible. 
Thus, verification of data integrity is the at most important for a 
user, who has outsourced data to the cloud. To make the integrity 
check, a public auditing must be made possible. Thus, we resort to a 
Third Party Auditor (TPA). Also, the auditing process should not 
bring in further more burdens to the user. In this paper, we propose 
a secure cloud storage for which we integrate the technique of 
Homomorphic linear authenticator with random masking. Thereby, 
we can assure integrity of the user’s outsourced data in the cloud. 
Also we propose batch auditing, in which TPA can perform 
simultaneous auditing at a time. 
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I. INTRODUCTION
Cloud computing has been viewed as the next-generation 
information technology (IT) architecture for enterprises, due to 
its long list of  advantages in  the  IT  history:  on-demand  self-
service, location independent resource pooling, rapid resource 
elasticity, usage-based pricing and transference of risk [2]. 
Cloud computing is transforming the way how businesses use 
information technology. One fundamental aspect of this 
moving into Cloud is that data are being centralized or 
outsourced to the cloud. From users’ perspective, including 
both individuals and IT enterprises, storing data remotely to the 
cloud in a flexible on-demand manner brings appealing 
benefits: relief of the burden for storage management, universal 
data access with location independence, and avoidance of 
capital expenditure on hardware, software, and personnel 
maintenances, etc., [3] Since cloud service providers (CSP) are 
separate administrative entities, data outsourcing is actually 
destroying user’s ultimate control over the fate of their data. As 
a result, the correctness of the data in the cloud is being put at 
risk due to the following reasons. First of all, they are still 
facing the broad range of both internal and external threats for 

data integrity [4]. Second, there may various motivations for 
CSP to behave unfaithfully toward the cloud users regarding 
their outsourced data status. In short, although outsourcing data 
to the cloud is economic-ally attractive for long-term large-
scale storage, it does not immediately offer any guarantee on 
data integrity and availability. This problem, if not properly 
addressed, may decrease the success of cloud architecture. 

As users no longer physically possess the storage of their data, 
traditional cryptographic primitives for the purpose of data 
security protection cannot be directly adopted [11]. In 
particular, simply downloading all the data for its integrity 
verification is not a practical solution due to the expensiveness 
in I/O and transmission cost across the network. Besides, it is 
often insufficient to detect the data corruption only when 
accessing the data, as it does not give users correctness 
assurance for those un accessed data and might be too late to 
recover the data loss or damage. 

Considering the large size of the outsourced data and the user’s 
constrained resource capability, the tasks of auditing the data 
correctness in a cloud environment can be formidable and 
expensive for the cloud users [12], [8]. Moreover, the overhead 
of using cloud storage should be minimized as much as 
possible, such that a user does not need to perform too many 
operations to use the data (in additional to retrieving the data). 
In particular, users may not want to go through the complexity 
in verifying the data integrity. Besides, there may be more than 
one user accesses the same cloud storage, say in an enterprise 
setting. For easier management, it is desirable that cloud only 
entertains verification request from a single designated party. 

To fully ensure the data integrity and save the cloud users’ 
computation resources as well as online burden, it is of critical 
importance to enable public auditing service for cloud data 
storage, so that users may resort to an independent third-party 
auditor (TPA) to audit the outsourced data when needed. The 
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TPA, who has expertise and capabilities that users do not, can 
periodically check the integrity of all the data stored in the 
cloud on behalf of the users, which provides a much more 
easier and affordable way for the users to ensure their storage 
correctness in the cloud. Moreover, in addition to help users to 
evaluate the risk of their subscribed cloud data services, the 
audit result from TPA would also be beneficial for the cloud 
service providers to improve their cloud based service platform, 
and even serve for independent arbitration purposes [10]. In a 
word, enabling public auditing services will play an important 
role for this nascent cloud economy to become fully 
established; where users will need ways to assess risk and gain 
trust in the cloud. 

Recently, the notion of public audit ability has been proposed in 
the context of ensuring remotely stored data integrity under 
different system and security models [9], [13], [11], [8]. Public 
audit ability allows an external party, in addition to the user 
himself, to verify the correctness of remotely stored data. 
However, most of these schemes [9], [13], [8] do not consider 
the privacy protection of users’ data against external auditors. 
Indeed, they may potentially reveal user’s data to auditors, as 
will be discussed in Section 3.4. This severe drawback greatly 
affects the security of these protocols in cloud computing. From 
the perspective of protecting data privacy, the users, who own 
the data and rely on TPA just for the storage security of their 
data, do not want this auditing process introducing new 
vulnerabilities of unauthorized information leakage toward 
their data security [14], [15].  

Simply exploiting data encryption before outsourcing [15], [11] 
could be one way to mitigate this privacy concern of data 
auditing, but it could also be an overkill when employed in the 
case of unencrypted/public cloud data (e.g., outsourced libraries 
and scientific data sets), due to the unnecessary processing 
burden for cloud users. Unauthorized data leakage still remains 
possible due to the potential exposure of decryption keys. 

Therefore, how to enable a privacy-preserving third-party 
auditing protocol, independent to data encryption, is the 
problem we are going to tackle in this paper. As the individual 
auditing of these growing tasks can be tedious and 
cumbersome, a natural demand is then how to enable the TPA 
to efficiently perform multiple auditing tasks in a batch manner, 
i.e., simultaneously.

To address these problems, our work utilizes the technique of 
public key-based homomorphic linear authenticator (or HLA 

for short) [9], [13], [8], which enables TPA to perform the 
auditing without demanding the local copy of data and thus 
drastically reduces the communication and computation 
overhead as compared to the straightforward data auditing 
approaches. By integrating the HLA with random masking, our 
protocol guarantees that the TPA could not learn any 
knowledge about the data content stored in the cloud server 
(CS) during the efficient auditing process.  

The aggregation and algebraic properties of the authenticator 
further benefit our design for the batch auditing. Specifically, 
we concentrate on the following aspects: 

 Our scheme enables an external auditor to audit user’s
cloud data without learning the data content.

 Our scheme achieves batch auditing where multiple
delegated auditing tasks from different users can be
performed simultaneously by the TPA in a privacy-
preserving manner.

 We prove the security and justify the performance of
our proposed schemes through concrete experiments
and comparisons with the state of the art.

II. CURRENT SCENARIO AND PROPOSED MODEL

2.1 The System and Threat Model 
We consider a cloud data storage service involving three 
different entities, as illustrated in the Figure: the cloud user, 
who has large amount of data files to be stored in the cloud; the 
cloud server, which is managed by the cloud service provider to 
provide data storage service and has significant storage space 
and computation resources; the third-party auditor, who has 
expertise and capabilities that cloud users do not have and is 
trusted to assess the cloud storage service reliability on behalf 
of the user upon request. Users rely on the CS for cloud data 
storage and maintenance. As users no longer possess their data 
locally, it is of critical importance for users to ensure that their 
data are being correctly stored and maintained. To save the 
computation resource as well as the online burden potentially 
brought by the periodic storage correctness verification, cloud 
users may resort to TPA while hoping to keep their data private 
from TPA. 

We assume the data integrity threats toward users’ data can 
come from both internal and external attacks at CS. Besides, 
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CS can be self-interested. For their own benefits, such as to 
maintain reputation, CS might even decide to hide these data 
corruption incidents to users. Using third-party auditing service 
provides a cost-effective method for users to gain trust in cloud. 
We assume the TPA, who is in the business of auditing, is 
reliable and independent. However, it may harm the user if the 
TPA could learn the outsourced data after the audit. 

Fig 1 : Cloud Service 

Note that in our model, beyond users’ reluctance to leak data to 
TPA, we also assume that cloud servers have no incentives to 
reveal their hosted data to external parties. Therefore, we 
assume that neither CS nor TPA has motivations to collude 
with each other during the auditing process. 

To authorize the CS to respond to the audit delegated to TPA’s, 
the user can issue a certificate on TPA’s public key, and all 
audits from the TPA are authenticated against such a certificate. 
These authentication handshakes are omitted in the following 
presentation.  

2.2 Design goals 

To enable privacy-preserving public auditing for cloud data 
storage under the aforementioned model, our protocol design 
should achieve the following security and performance 
guarantees 

 Public auditability: To allow TPA to verify the
correctness of the cloud data on demand without
retrieving a copy of the whole data or introducing
additional online burden to the cloud users.

 Storage correctness: To ensure that there exists no
cheating cloud server that can pass the TPA’s audit
without indeed storing users’ data intact.

 Privacy preserving: To ensure that the TPA cannot
derive users’ data content from the information
collected during the auditing process.

 Batch auditing: To enable TPA with secure and
efficient auditing capability to cope with multiple
auditing delegations from possibly large number of
different users simultaneously.

 Lightweight: To allow TPA to perform auditing with
minimum communication and computation overhead.

III. THE PROPOSED SCHEMES

3.1 Notation and Preliminaries 

This section presents our public auditing scheme which 
provides a complete outsourcing solution of data—not only the 
data itself, but also its integrity checking. After introducing 
notations and brief preliminaries, we start from an overview of 
our public auditing system and discuss two straightforward 
schemes and their demerits. Then, we present our main scheme 
and show how to extent our main scheme to support batch 
auditing for the TPA upon delegations from multiple users. 
Finally, we discuss how to generalize our privacy-preserving 
public auditing scheme and its support of data dynamics. 

 F: the data file to be outsourced, denoted as a sequence
of n blocks m1, m2, m3,..,mi,.., mn  € Zp for some
large prime p.

 MAC(.) (.) : message authentication code (MAC)
function, defined as: K X {0, 1}* => {0, 1}l where K
denotes Key space.

 H (.), h (.) : cryptographic hash functions

We now introduce some necessary cryptographic background 
for our proposed scheme. 

Bilinear Map:  Let G1, G2, and GT be multiplicative cyclic 
groups of prime order p. Let g1 and g2 be generators of G1 and 
G2, respectively. A bilinear map e is a map:  
G1 X G2 -> GT such that for all u € G1G2 and  

a; b €Zp, e(ua , vb) = e(u,v)ab. This bilinearity implies that for 
any u1, u2 €G1, v€G2, e(u1.u2, v)= e(u1,v).e(u2; v). Of course, 
there exists an efficiently computable algorithm for computing 
e and the map should be nontrivial, i.e., e is non degenerate: e 
(g1; g2) ≠ 1. 
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3.2 Definitions and Framework 

We follow a similar definition of previously proposed schemes 
in the context of remote data integrity checking [9], [11], [13] 
and adapt the framework for our privacy-preserving public 
auditing system. A public auditing scheme consists of four 
algorithms (KeyGen, SigGen, GenProof, VerifyProof). KeyGen 
is a key generation algorithm that is run by the user to setup the 
scheme. SigGen is used by the user to generate verification 
metadata, which may consist of digital signa-tures. GenProof is 
run by the cloud server to generate a proof of data storage 
correctness, while VerifyProof is run by the TPA to audit the 
proof. 

Running a public auditing system consists of two phases, Setup 
and Audit: 
Setup: The user initializes the public and secret parameters of 
the system by executing KeyGen, and pre processes the data 
file F by using SigGen to generate the verification metadata. 
The user then stores the data file F and the verification 
metadata at the cloud server, and delete its local copy. As part 
of pre processing, the user may alter the data file F by 
expanding it or including additional metadata to be stored at 
server. 

Audit: The TPA issues an audit message or challenge to the 
cloud server to make sure that the cloud server has retained the 
data file F properly at the time of the audit. The cloud server 
will derive a response message by executing GenProof using F 
and its verification metadata as inputs. The TPA then verifies 
the response via Verify Proof. 

Our framework assumes that the TPA is stateless, i.e., TPA 
does not need to maintain and update state between audits, 
which is a desirable property especially in the public auditing 
system [13].  

Note that it is easy to extend the framework above to capture a 
stateful auditing system, essentially by splitting the verification 
metadata into two parts which are stored by the TPA and the 
cloud server, respectively.  

Our design does not assume any additional property on the data 
file. If the user wants to have more error resilience, he can first 
redundantly encode the data file and then uses our system with 
the data that has error-correcting codes integrated. 

3.3 The Basic Scheme 

Before giving our main result, we study two classes of schemes 
as a warm up. The first one is a MAC-based solution which 
suffers from undesirable systematic demerits - bounded usage 
and stateful verification, which may pose additional online 
burden to users, in a public auditing setting.  

This also shows that the auditing problem is still not easy to 
solve even if we have introduced a TPA. The second one is a 
system based on homomorphic linear authenticators, which 
covers much recent proof of storage systems. We will pinpoint 
the reason why all existing HLA-based systems are not privacy 
preserving. The analysis of these basic schemes leads to our 
main result, which overcomes all these drawbacks. Our main 
scheme to be presented is based on a specific HLA scheme. 

MAC-based solution: There are two possible ways to make use 
of MAC to authenticate the data. A trivial way is just uploading 
the data blocks with their MACs to the server, and sends the 
corresponding secret key sk to the TPA. Later, the TPA can 
randomly retrieve blocks with their MACs and check the 
correctness via sk. Apart from the high (linear in the sampled 
data size) communication and computation complexities, the 
TPA requires the knowledge of the data blocks for verification. 

To circumvent the requirement of the data in TPA verification, 
one may restrict the verification to just consist of equality 
checking. The idea is as follows: Before data outsourcing, the 
cloud user chooses‘s’ random Message Authentication Code 
keys {skr}1<=r<=s’ precomputes MACs for the whole file F and 
publishes these verification metadata (the keys and the MACs) 
to TPA. The TPA can reveal a secret key skr to the cloud server 
and ask for a fresh keyed MAC for comparison in each audit. 
This is privacy preserving as long as it is impossible to recover 
F in full given MAC skr(F) and skr. However, it suffers from 
the following severe drawbacks:  

The number of times a particular data file can be audited is 
limited by the number of secret keys that must be fixed a prior. 
Once all possible secret keys are exhausted, the user then has to 
retrieve data in full to recompute and republish new MACs to 
TPA.  

 The TPA also has to maintain and update state
between audits, i.e., keep track on the revealed MAC
keys. Considering the potentially large number of
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audit delegations from multiple users, maintaining 
such states for TPA can be difficult and error prone. 

 It can only support static data, and cannot efficiently
deal with dynamic data at all. However, supporting
data dynamics is also of critical importance for cloud
storage systems.

HLA-based solution: To effectively support public audit ability 
without having to retrieve the data blocks themselves, the HLA 
technique [9], [13], [8] can be used. HLAs, like MACs, are also 
some un forgeable verification metadata that authenticate the 
integrity of a data block. The difference is that HLAs can be 
aggregated. It is possible to compute an aggregated HLA which 
authenticates a linear combination of the individual data blocks. 
At a high level, an HLA-based proof of storage system works 
as follow. The user still authenticates each element of F = {mi} 
by a set of HLAs ɸ. The TPA verifies the cloud storage by 
sending a random set of challenge {vi}. The cloud server then 
returns µ=∑i vi. mi and its aggregated authenticator σ computed 
from ɸ.  

Though allowing efficient data auditing and consuming only 
constant bandwidth, the direct adoption of these HLA based 
techniques is still not suitable for our purposes. This is because 
the linear combination of blocks, µ=∑i  vi. mi, may potentially 
reveal user data information to TPA, and violates the privacy-
preserving guarantee. Specifically, by challenging the same set 
of c block m1, m2 . . ., mc using c different sets of random 
coefficients {vi}, TPA can accumulate c different linear 
ombinations µ1, . . . . µc. With { µi} and {vi}, TPA can derive 
the user’s data m1,m2, . . ., mc by simply solving a system of 
linear equations.  

Fig 2 : TPA Vs Cloud Server 
To achieve privacy-preserving public auditing, we propose to 
uniquely integrate the homomorphic linear authenticator with 

random masking technique. In our protocol, the linear 
combination of sampled blocks in the server’s response is 
masked with randomness generated by the server. With random 
masking, the TPA no longer has all the necessary information 
to build up a correct group of linear equations and therefore 
cannot derive the user’s data content, no matter how many 
linear combinations of the same set of file blocks can be 
collected. On the other hand, the correctness validation of the 
block-authenticator pairs can still be carried out in a new way 
which will be shown shortly, even with the presence of the 
randomness. Our design makes use of a public key-based HLA, 
to equip the auditing protocol with public audit ability. 
Specifically, we use the HLA proposed in [13], which is based 
on the short signature scheme proposed by Boneh, Lynn, and 
Shacham [19]. 

Scheme details:  Let G1, G2, and GT be multiplicative cyclic 
groups of prime order p, and e: G1 X G2 => GT be abilinear 
map as introduced in preliminaries. Let g be agenerator of G2. 
H(.) is a secure map-to-point hash function: {0, 1}*=>G1, 
which maps strings uniformly toG1. Another hash function h(.): 
GT=> Zp maps group element of GT uniformly to Zp. Our 
scheme is asfollows: 

Setup Phase: The cloud user runs KeyGen to generate the 
public and secret parameters. Specifically, the user chooses a 
random signing key pair (spk, ssk), a random x <=Zp, a random 
element u <= G1, and computes v<= gx. The secret parameter is 
sk = (x, ssk) and the public parameters are pk = (spk, v, g, u; 
e(u, v)).  

Given a data file F= {mi}, the user runs SigGen to compute 
authenticator σi<= H((Wi) . umi)x€ G1 for each i.Here, Wi= 
name || i and name is chosen by the user uniformly at random 
from Zp as the identifier of file F. Denote the set of 
authenticators by ɸ= {σi}1<=i<=n. The last part of SigGen is for 
ensuring the integrity of the unique file identifier name. One 
simple way to do this is to computet=name || SSigssk(name) as 
the file tag for F, where SSigssk(name) is the signature on 
name under the private key ssk. For simplicity, we assume the 
TPA knows the number of blocks n. The user then sends F 
along with the verification metadata (ɸ, t) to the server and 
deletes them from local storage.  

Audit Phase: The TPA first retrieves the file tag t. With respect 
to the mechanism we describe in the Setup phase, the TPA 
verifies the signature SSigssk(name) via spk, and quits by 
emitting FALSE if the verification fails. Otherwise, the TPA 
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recovers name. 

Now it comes to the “core” part of the auditing process. To 
generate the challenge message for the audit “chal,” the TPA 
picks a random c-element subset I = {s1, s2, s3,..., sc} of set [1, 
n]. For each element i € I, the TPA also chooses a random value 
vi. The message “chal” specifies the positions of the blocks
required to be checked. The TPA sends chal ={(i, vi)} i€I to the
server.

Upon receiving challenge chal = {(i, vi)} i€I , the server runs 
GenProof to generate a response proof of data storage 
correctness. Specifically, the server chooses a random element r 
<= Zp, and calculates R = e(u, v)r€ GT . Let µ’ denote the 
linear combination of sampled blocks specified in chal:  
µ’=∑i€Ivimi. To blind µ’ with r, the server computes: µ= r +ϒµ’ 
mod p, where ϒ= h(R) € Zp. Meanwhile, the server also 
calculates an aggregated authenticator σ=Ӆi€Iσi

vi€ G1. It then 
sends {µ, σ, R},as the proof of storage correctness to the TPA. 
With the response, the TPA runs VerifyProof to validate it by 
first computing           ϒ= h(R) and then checking the 
verification equations. 

3.4 Support for Data Dynamics 

In cloud computing, outsourced data might not only be 
accessed but also updated frequently by users for various 
application purposes [21], [8], [22], [23]. Hence, supporting 
data dynamics for privacy-preserving public auditing is also of 
paramount importance. Now, we show how to build upon the 
existing work [8] and adapt our main scheme to support data 
dynamics, including block level operations of modification, 
deletion, and   insertion. 
In [8], data dynamics support is achieved by replacing the index 
information i with mi in the computation of block 
authenticators and using the classic data structure - Merkle hash 
tree (MHT) [24] for the underlying block sequence 
enforcement. As a result, the authenticator for each block is 
changed to σi = (H(mi) . umi )x. We can adopt this technique in 
our design to achieve privacy preserving public auditing with 
support of data dynamics.  

3.5 Generalisation 

As mentioned before, our protocol is based on the HLA in [13]. 
It has been shown in [25] that HLA can be constructed by 
homomorphic identification protocols. One may apply the 
random masking technique we used to construct the 

corresponding zero knowledge proof for different 
homomorphic identification protocols. Therefore, our privacy 
preserving public auditing system for secure cloud storage can 
be generalized based on other complexity assumptions, such as 
factoring [25]. 

IV. ZERO KNOWLEDGE PUBLIC AUDITING

Fig 3 : Comparison on auditing 

Comparison on auditing time between batch and individual 
auditing, when α-fraction of 256 responses are invalid: Per task 
auditing time denotes the total auditing time divided by the 
number of tasks. 

The above auditing protocol achieves zero knowledge 
information leakage to the TPA, and it also ensures the 
storage correctness guarantee. 

Proof 
Zero-knowledge is easy to see. Randomly pick ϒ; µ; & ζ from 
Zp and ∑ from G1, set R<= e((Ӆi=s1

sc H(Wi)vi)ϒ. uӅ, v) . e(g1, 
g)ζ/e(∑ϒ; g) and backpatch  ϒ = h(R). For proof of storage
correctness, we can extract ῤ similar to the extraction of µ’.
Likewise, σ can be recovered from ∑. To conclude, a valid pair
of σ and µ’ can be extracted.

V. RELATED WORK

Ateniese et al. [9] are the first to consider public auditability in 
their “provable data possession” (PDP) model for ensuring 
possession of data files on untrusted storages. They utilize the 
RSA-based homomorphic linear authenticators for auditing 
outsourced data and suggest randomly sampling a few blocks of 
the file. However, among their two proposed schemes, the one 
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with public auditability exposes the linear combination of 
sampled blocks to external auditor. When used directly, their 
protocol is not provably privacy preserving, and thus may leak 
user data information to the external auditor. Juels et al. [11] 
describe a “proof of retrievability” (PoR) model, where spot-
checking and error-correcting codes are used to ensure both 
“possession” and “retrievability” of data files on remote archive 
service systems. However, the number of audit challenges a 
user can perform is fixed a prior, and public auditability is not 
supported in their main scheme.  

Although they describe a straightforward Merkle-tree 
construction for public PoRs, this approach only works with 
encrypted data. Later, Bowers et al. [18] propose an improved 
framework for POR protocols that generalizes Juels’ work. 
Dodis et al. [29] also give a study on different variants of PoR 
with private auditability. Shacham and Waters [13] design an 
improved PoR scheme built from BLS signatures [19] with 
proofs of security in the security model defined in [11]. Similar 
to the construction in [9], they use publicly verifiable 
homomorphic linear authenticators that are built from provably 
secure BLS signatures.  

Based on the elegant BLS construction, a compact and public 
verifiable scheme is obtained. Again, their approach is not 
privacy preserving due to the same reason as [9]. Shah et al. 
[15], [10] propose introducing a TPA to keep online storage 
honest by first encrypting the data then sending a number of 
pre-computed symmetric-keyed hashes over the encrypted data 
to the auditor. The auditor verifies the integrity of the data file 
and the server’s possession of a previously committed 
decryption key. This scheme only works for encrypted files, 
requires the auditor to maintain state, and suffers from bounded 
usage, which potentially brings in online burden to users when 
the keyed hashes are used up. 

Dynamic data have also attracted attentions in the recent 
literature on efficiently providing the integrity guarantee of 
remotely stored data. Ateniese et al. [21] is the first to propose 
a partially dynamic version of the prior PDP scheme, using 
only symmetric key cryptography but with a bounded number 
of audits. In [22], Wang et al. consider a similar support for 
partially dynamic data storage in a distributed scenario with 
additional feature of data error localization. In a subsequent 
work, Wang et al. [8] propose to combine BLS-based HLA 
with MHT to support fully data dynamics. Concurrently, Erway 
et al. [23] develop a skip list-based scheme to also enable 
provable data possession with full dynamics support. However, 

the verification in both protocols requires the linear 
combination of sampled blocks as an input, like the designs in 
[9], [13], and thus does not support privacy-preserving auditing. 

In other related work, Sebe et al. [30] thoroughly study a set of 
requirements which ought to be satisfied for a remote data 
possession checking protocol to be of practical use. Their 
proposed protocol supports unlimited times of file integrity 
verifications and allows preset tradeoff between the protocol 
running time and the local storage burden at the user. Schwarz 
and Miller [31] propose the first study of checking the integrity 
of the remotely stored data across multiple distributed servers. 
Their approach is based on erasure-correcting code and 
efficient algebraic signatures, which also have the similar 
aggregation property as the homomorphic authenticator utilized 
in our approach.  

Curtmola et al. [32] aim to ensure data possession of multiple 
replicas across the distributed storage system. They extend the 
PDP scheme in [9] to cover multiple replicas without encoding 
each replica separately, providing guarantee that multiple 
copies of data are actually maintained.  

In [33], Bowers et al. utilize a two-layer erasure-correcting 
code structure on the remotely archived data and extend their 
POR model [18] to distributed scenario with high-data 
availability assurance.  

While all the above schemes provide methods for efficient 
auditing and provable assurance on the correctness of remotely 
stored data, almost none of them necessarily meet all the 
requirements. Our scheme can greatly reduce the computation 
cost on the TPA when coping with a large number of audit 
delegations. 

Portions of the work presented in this paper have previously 
appeared as an extended abstract in [1]. We have revised the 
paper a lot and improved many technical details as compared to 
[1]. The primary improvements are as follows: First, we 
provide a new privacy-preserving public auditing protocol with 
enhanced security strength in a previous section. Second, based 
on the enhanced main auditing scheme,  

we provide a new provably secure batch auditing protocol. All 
the experiments in our performance evaluation for the newly 
designed protocol are completely redone. Finally, we provide 
formal analysis of privacy-preserving guarantee and storage 
correctness, while only heuristic arguments are sketched in [1]. 
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VI. CONCLUSION

In this paper, we propose a privacy-preserving public auditing 
system for data storage security in cloud comput-ing. We 
utilize the homomorphic linear authenticator and random 
masking to guarantee that the TPA would not learn any 
knowledge about the data content stored on the cloud server 
during the efficient auditing process, which not only eliminates 
the burden of cloud user from the tedious and possibly 
expensive auditing task, but also alleviates the users’ fear of 
their outsourced data leakage. Considering TPA may 
concurrently handle multiple audit sessions from different users 
for their outsourced data files, we further extend our privacy-
preserving public auditing protocol into a multiuser setting, 
where the TPA can perform multiple auditing tasks in a batch 
manner for better efficiency. Extensive analysis shows that our 
schemes are provably secure and highly efficient. Our 
preliminary experiment conducted on Amazon EC2 instance 
further demonstrates the fast performance of our design on both 
the cloud and the auditor side. We leave the full-fledged 
implementation of the mechanism on commercial public cloud 
as an important future extension, which is expected to robustly 
cope with very large scale data and thus encourage users to 
adopt cloud storage services more confidently. 
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